Unsupervised Cell Nuclei Segmentation Based on Morphology and Adaptive Active Contour Modelling
نویسندگان
چکیده
This paper proposes an unsupervised segmentation scheme for cell nuclei. This method computes the cell nuclei by using adaptive active contour modelling which is driven by the morphology method. Firstly, morphology is used to enhance the gray level values of cell nuclei. Then binary cell nuclei is acquired by using an image subtraction technique. Secondly, the masks of cell nuclei are utilized to drive an adaptive region-based active contour modelling to segment the cell nuclei. In addition, an artificial interactive segmentation method is used to generate the ground truth of cell nuclei. This method can have an interest in several applications covering different kinds of cell nuclei. Experiments show that the proposed method can generate accurate segmentation results compared with alternative approaches.
منابع مشابه
Fractional Entropy Based Active Contour Segmentation of Cell Nuclei in Actin-Tagged Confocal Microscopy Images
In the framework of cell structure characterization for predictive oncology, we propose in this paper an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical de...
متن کاملStatistical region based active contour using a fractional entropy descriptor: Application to nuclei cell segmentation in confocal microscopy images
We propose an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for image segmentation with a particular application to single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional ent...
متن کاملCombining shape, texture and intensity features for cell nuclei extraction in Pap smear images
In this work, we present an automated method for the detection and boundary determination of cells nuclei in conventional Pap stained cervical smear images. The detection of the candidate nuclei areas is based on a morphological image reconstruction process and the segmentation of the nuclei boundaries is accomplished with the application of the watershed transform in the morphological color gr...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کامل3D Confocal Microscopy Data Analysis using Level-set Segmentation with Alpha Divergence Similarity Measure
Segmentation of cellular structures is of primary interest in cell imaging for a 3D reconstruction of cell shape. Such an analysis provides crucial information about cell morphology and is instrumental in understanding of biological processes leading to development of a particular pathology. The work presented in this paper reports on a novel method for segmentation of cellular structures (nucl...
متن کامل